Crystal Structure

Communications

ISSN 0108-2701

(Z)-2-(1-Phenylsulfonyl-1 H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]-octan-3-one and (Z)-(S)-2-(1-phenyl-sulfonyl- 1 H -indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
Correspondence e-mail: pcrooks@uky.edu

Received 22 June 2004
Accepted 29 June 2004
Online 11 August 2004
The title compounds, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, (I), and $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, (II), crystallize in space groups $P \overline{1}$ and $P 2_{1} 2_{1} 2_{1}$, respectively. The indole rings are planar and the benzene ring of the phenylsulfonyl group makes a dihedral angle with the mean plane of the indole ring of 90.2 (2) ${ }^{\circ}$ in (I) and 94.0 (2) ${ }^{\circ}$ in (II). In both molecules, the double bond connecting the azabicyclic and indole moieties has a Z geometry. Compound (II) was obtained as an enantiomerically pure crystal and has the $3 S$ configuration.

Comment

Glutamate cysteine ligase, the rate-limiting enzyme in the synthesis of glutathione, is a novel target of chemoprevention paradigms. GCLC and GCLM, the genes encoding glutamate cysteine ligase subunits, are induced by indoles such as indomethacin (Sekhar et al., 2002). In this regard, novel functionalized indole analogues and other structurally related compounds have been synthesized and utilized for comparative structure analysis of GCLC induction (Sekhar et al., 2003). The second of the title compounds, (II), was found to be ten

(1)

(II)
times more active than indomethacin in inducing GCLC, whereas the first of the title compounds, (I), is inactive. Aldol condensation of 1 -phenylsulfonyl- 1 H -indole- 3 -carboxalde-

Figure 1
A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 2
A view of the molecule of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms, except that linked to atom O18, have been omitted for clarity.
hyde with 1-azabicyclo[2.2.2]octan-3-one affords (I) as a single geometric isomer. Compound (I) was reduced to the corresponding alcohol with sodium borohydride in methanol. The compositions of (I) and (II) were initially identified by NMR spectroscopy. In order to confirm the double-bond geometry of these compounds, and to obtain more detailed information about the structural conformation of the molecules that may be of value in structure-activity analysis, their X-ray structure determination has also been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity for (I) and (II), as illustrated in Figs. 1 and 2; selected geometric parameters are presented in Tables 1 and 2, respectively. For each structure, the indole ring is planar, with bond distances and angles comparable to those reported previously for other indole derivatives (Mason et al., 2003; Zarza et al., 1988). The geometries around the S atoms are distorted from ideal tetrahedral, the largest deviations being in
the $\mathrm{O}=\mathrm{S}=\mathrm{O}\left[\mathrm{O} 2=\mathrm{S} 1=\mathrm{O} 1\right.$ in (I) is $121.08(6)^{\circ}$ and in (II) is $\left.120.64(9)^{\circ}\right]$ and $\mathrm{O}=\mathrm{S}-\mathrm{N}$ angles $[\mathrm{O} 2=\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{O} 1=$ $\mathrm{S} 1-\mathrm{N} 1$ in (I) are 106.87 (6) and 105.68 (5) ${ }^{\circ}$, and in (II) are 106.61 (9) and $105.48(8)^{\circ}$]. This type of deviation in the sulfonyl group has been reported previously and is due to the repulsive interaction between the short $\mathrm{S}=\mathrm{O}$ bonds (Seshadri et al., 2002). The $\mathrm{S}=\mathrm{O}, \mathrm{S}-\mathrm{C}$ and $\mathrm{S}-\mathrm{N}$ distances are comparable to those found in N-phenylsulfonamides (Gomes et al., 1993). The conformation of the phenylsulfonyl group with respect to the indole ring is described by the $\mathrm{O} 1=\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2, \quad \mathrm{O} 2=\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 9 \quad$ and $\mathrm{N} 1-\mathrm{S} 1-$ $\mathrm{C} 19-\mathrm{C} 20$ torsion angles. The benzene ring linked to the sulfonyl group is orthogonal to the indole ring system, forming a dihedral angle of $90.2(2)^{\circ}$ in (I) and $94.0(2)^{\circ}$ in (II).

Compounds (I) and (II) are both Z isomers; the $\mathrm{C} 11-\mathrm{C} 18$ bond is in a trans disposition with respect to the C3-C10 bond. The double bond has a nearly planar arrangement, with an r.m.s. deviation from the mean plane passing through atoms $\mathrm{N} 12, \mathrm{C} 11, \mathrm{C} 18, \mathrm{C} 10$ and C 3 of 0.008 (11) \AA in (I) and 0.0021 (11) \AA in (II). Deviations from ideal geometry are observed in the bond angles around atoms C3, C10 and C11. While the $\mathrm{C} 10=\mathrm{C} 11-\mathrm{C} 18$ angle is close to the ideal value of 120°, the $\mathrm{C} 2=\mathrm{C} 3-\mathrm{C} 10, \mathrm{C} 3-\mathrm{C} 10=\mathrm{C} 11$ and $\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 18$ angles are more distorted in both molecules as a consequence of the strain induced by the $\mathrm{C} 10=\mathrm{C} 11$ double-bond linkage. In both molecules, the aza-bicyclic system exhibits very small distortions around atoms $\mathrm{N} 12, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 16$ and C 17 . The values of the $\mathrm{C} 2=\mathrm{C} 3-\mathrm{C} 10=\mathrm{C} 11$ torsion angles $\left[-2.2(2)^{\circ}\right.$ in (I) and $-21.0(3)^{\circ}$ in (II)] indicate that the deviation of the indole ring from the plane of the double bond connected to the aza-bicyclic ring is greater in (II) than it is in (I). The C3-C10 bond length, when compared with the standard value for a $\mathrm{C}_{\mathrm{ar}}-\mathrm{Csp}^{2}$ single bond $[1.470$ (15) \AA; Wilson, 1992], suggests extensive conjugation, beginning at atom O 18 and extending through to the aromatic ring in (I), which is also evident from the $\mathrm{C} 11-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{O} 18$ bond lengths. However, in the case of (II), where the carbonyl group has been reduced to the corresponding alcohol, the $\mathrm{C} 11-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{O} 18$ bond lengths have a purely single-bond character, and conjugation begins at C 11 and extends to the aromatic ring. This extended conjugation in (I) and (II) explains the difference in the $\mathrm{C} 2=\mathrm{C} 3-\mathrm{C} 10=\mathrm{C} 11$ torsion angle.

The crystal of compound (II) appeared to be enantiomerically pure, presumably as a result of spontaneous resolution during crystallization. A standard test (Bernardinelli \& Flack, 1985) suggested that it has the $3 S$ configuration. Nonetheless, the chemistry should show no preference for any particular enantiomer, so, in all likelihood, half of the crystals obtained would have been in the $3 R$ configuration. The H atom attached to atom O 18 is involved in an intermolecular hydrogen bond ($2.30 \AA$) with atom O 18 of another molecule (Table 3), thus forming an infinite chain running in the a direction. In addition to $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ weak interactions, van der Waals forces contribute to the stabilization of the crystal structures of (I) and (II).

Experimental

To a stirred solution of diisopropylamine $(1.923 \mathrm{~g}, 19 \mathrm{mmol})$ in tetrahydrofuran (THF, 20 ml) at 273 K under nitrogen was added a solution of 2.0 M n -butyllithium ($9 \mathrm{ml}, 18.8 \mathrm{mmol}$) and the mixture was stirred at 273 K for 30 min . To this solution, at 273 K , was added 1-azabicyclo[2.2.2]octan-3-one hydrochloride ($1.5 \mathrm{~g}, 9.28 \mathrm{mmol}$) in one portion and stirring was continued until the hydrochloride completely dissolved (20 min). The temperature was lowered to 195 K and a solution of 1-phenylsulfonyl- H -indole-3-carboxaldehyde $(2.63 \mathrm{~g}, 9.2 \mathrm{mmol})$ in THF (30 ml) was added dropwise. Stirring was continued for 30 min at this temperature and then at 273 K for 90 min . The reaction mixture was poured into an aqueous saturated NaHCO_{3} solution at 273 K and the resulting solution was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford a yellow solid. Crystallization from methanol gave (I) as a yellow crystalline product suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 1.85-1.91 ($m, 4 \mathrm{H}$), $2.49(p, 1 \mathrm{H}), 2.78-2.87(m, 2 \mathrm{H}), 3.02-3.11(m, 2 \mathrm{H})$, $7.07(s, 1 \mathrm{H}), 7.10-7.21(m, 2 \mathrm{H}), 7.27-7.32(m, 2 \mathrm{H}), 7.36-7.42(m, 1 \mathrm{H})$, $7.56-7.59(d d, 1 \mathrm{H}), 7.73-7.76(m, 2 \mathrm{H}), 7.79-7.82(d d, J=1.5$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.4,40.7,47.5,113.7$, $115.0,116.1,119.4,124.0,125.3,127.0,129.5,130.5,134.2,134.5,138.0$, $144.9,205.3$. To a stirred solution of (I) $(0.392 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ at 273 K was added $\mathrm{NaBH}_{4}(0.379 \mathrm{~g}, 10 \mathrm{mmol})$ over a period of 15 min and stirring was continued for 2 h at room temperature. Water (50 ml) was added and the mixture was extracted with CHCl_{3} $(3 \times 10 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give (II) as a colorless solid. Crystallization from methanol afforded colorless needles suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.46-1.61(m, 2 \mathrm{H}), 1.72-1.90(m, 4 \mathrm{H}), 2.05-2.08(p$, $1 \mathrm{H}), 4.38(s, 1 \mathrm{H}), 6.42(d, 1 \mathrm{H}), 7.21-7.32(m, 2 \mathrm{H}), 7.37-7.43(m, 2 \mathrm{H})$, $7.47-7.52(m, 1 \mathrm{H}), 7.6(d, 1 \mathrm{H}), 7.86(d, 2 \mathrm{H}), 7.98(d, 1 \mathrm{H}), 8.42(s, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.4,25.7,31.5,46.9,48.0,71.4,110.9,111.0$, $113.8,117.5,119.1,123.4,124.7,126.4,126.8,129.3,130.7,133.8,134.6$, 138.3, 153.2.

Compound (I)

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=392.46$
Triclinic, $P \overline{1}$
$a=7.7070(1) \AA$ 。
$b=10.7080$ (2) \AA
$c=12.3080(2) \AA$
$\alpha=94.5900(7)^{\circ}$
$\beta=104.1170(7)^{\circ}$
$\gamma=110.1160(7)^{\circ}$
$V=909.86(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.433 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4073 \\
& \quad \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=0.21 \mathrm{~mm}^{-1} \\
& T=90.0(2) \mathrm{K} \\
& \text { Irregular wedge, yellow } \\
& 0.35 \times 0.25 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer
ω scans
8085 measured reflections
4145 independent reflections
3720 reflections with $I>2 \sigma(I)$
Refinement

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \\
& w R\left(F^{2}\right)=0.090 \\
& S=1.02 \\
& 4145 \text { reflections } \\
& \text { 254 parameters } \\
& \text { H-atom parameters constrained }
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {int }}=0.018 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-13 \rightarrow 13 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0439 P)^{2}\right. \\
& \quad+0.4878 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3} \\
\text { Extinction correction: } \text { SHELXL } 97 \\
\text { Extinction coefficient: } 0.008
\end{array}\right)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

S1-O2	$1.4280(9)$	$\mathrm{C} 3-\mathrm{C} 10$	$1.4493(16)$
S1-O1	$1.4282(10)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.3404(17)$
S1-N1	$1.6643(11)$	$\mathrm{C} 11-\mathrm{N} 12$	$1.4455(15)$
S1-C19	$1.7609(13)$	$\mathrm{C} 11-\mathrm{C} 18$	$1.4888(16)$
N1-C2	$1.4000(15)$	$\mathrm{N} 12-\mathrm{C} 17$	$1.4844(16)$
N1-C9	$1.4145(16)$	$\mathrm{O} 18-\mathrm{C} 18$	$1.2228(15)$
O2-S1-O1	$121.08(6)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 3$	$128.56(12)$
O1-S1-N1	$105.68(5)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18$	$121.74(11)$
O1-S1-C19	$108.92(6)$	$\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 18$	$113.76(10)$
N1-S1-C19	$104.68(6)$	$\mathrm{O} 18-\mathrm{C} 18-\mathrm{C} 11$	$124.79(11)$
C2-C3-C10	$128.56(12)$	$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 15$	$110.44(10)$
O1-S1-N1-C2	$32.66(12)$	$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18$	$178.18(11)$
O2-S1-N1-C9	$-38.89(12)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18-\mathrm{O} 18$	$6.4(2)$
C2-C3-C10-C11	$-2.2(2)$	$\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 18-\mathrm{O} 18$	$-175.02(11)$
C3-C10-C11-N12	$-0.2(2)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 19-\mathrm{C} 20$	$87.02(11)$

Compound (II)

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=394.48$
Orthorhombic, $P 2_{1} 2_{2} 2_{1}$
$a=6.1300(1) \AA$
$b=12.9500(2) \AA$
$c=23.6800(4) \AA$
$V=1879.80(5) \AA^{3}$
$Z=4$
$D_{x}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2500 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=90.0 \mathrm{~K}$
Block, colorless
$0.25 \times 0.22 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω scans
23509 measured reflections
4283 independent reflections
3780 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.049 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-16 \rightarrow 16 \\
& l=-30 \rightarrow 30
\end{aligned}
$$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0532 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$	$+0.395 P]$
$w R\left(F^{2}\right)=0.094$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\max }=0.004$
4283 reflections	$\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
253 parameters	$\Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	1807 Friedel pairs
	Flack parameter $=0.00(7)$

All H atoms were located in difference Fourier syntheses, and were subsequently positioned geometrically and treated as riding, with bond distances to parent atoms of $0.95\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 0.99\left(\mathrm{C}_{\text {sec }}-\mathrm{H}\right), 1.00$ $\left(\mathrm{C}_{\text {tert }}-\mathrm{H}\right)$ and $0.89 \AA(\mathrm{O}-\mathrm{H})$. The absolute structure of (II) was determined by refinement of the Flack parameter (Flack, 1983; Bernardinelli \& Flack, 1985), the value of which indicates the probable correctness of the assignment.

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

Table 2
Selected geometric parameters ($\AA,^{\circ}$) for (II).

S1-O2	1.4247 (15)	C3-C10	1.463 (3)
S1-O1	1.4276 (14)	C10-C11	1.332 (3)
S1-N1	1.6591 (16)	C11-N12	1.441 (2)
S1-C19	1.7620 (19)	C11-C18	1.524 (3)
N1-C2	1.408 (2)	N12-C17	1.486 (2)
N1-C9	1.416 (2)	O18-C18	1.426 (2)
O2-S1-O1	120.64 (9)	C11-C10-C3	126.31 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	105.48 (8)	C10-C11-C18	123.55 (17)
O1-S1-C19	108.59 (9)	N12-C11-C18	114.56 (16)
N1-S1-C19	106.19 (9)	O18-C18-C11	108.35 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	128.12 (17)	C11-C18-C15	107.22 (15)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2$	30.04 (17)	C3-C10-C11-C18	179.54 (18)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 9$	-46.13 (18)	C10-C11-C18-O18	52.0 (2)
C2-C3-C10-C11	-21.0 (3)	N12-C11-C18-O18	-128.56 (17)
C3-C10-C11-N12	0.1 (3)	N1-S1-C19-C20	85.76 (16)

Table 3
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 18-\mathrm{H} 18 \mathrm{O} \cdots \mathrm{O} 8^{\mathrm{i}}$	0.89	2.30	$3.142(3)$	157

Symmetry code: (i) $x-\frac{1}{2}, \frac{5}{2}-y, 2-z$.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism (grant No. AA12600).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1739). Services for accessing these data are described at the back of the journal.

References

Bernardinelli, G. \& Flack, H. D. (1985). Acta Cryst. A41, 500-511.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gomes, A. C., Biswas, G., Biswas, S., Biswas, G. K., Iitaka, Y. \& Banerjee, A. (1993). J. Crystallogr. Spectrosc. Res. 23, 513-517.

Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. \& Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531-540.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Starnes, J. H., Kelton, K. R., Summar, S. R., Sasi, S. \& Freeman, M. L. (2003). Cancer Res. 63, 5636-5645.
Sekhar, K. R., Spitz, D. R., Harris, S., Nguyen, T. T., Meredith, M. J., Holt, J. T., Guis, D., Marnett, L. J., Summar, M. L. \& Freeman, M. L. (2002). Free Radical Biol. Med. 32, 650-662.
Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. \& Kim, M. J. (2002). Acta Cryst. C58, o700-o703.
Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, Table 9.5.1.1. Dordrecht/Boston/London: Kluwer Academic Publishers.

Zarza, P. M., Gill, P., Gonzales, M. C. D., Reyes, M. G. M., Arrieta, J. M., Nastopoulos, V., Germain, G. \& Debaerdemaeker, T. (1988). Acta Cryst. C44, 678-681.

